The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 1 1 X 0 1 1 X X^2 1 1 X^2 X X X 1 1 1 1 1 1 X 0 X 1 0 1 1 1 X X^2 X X^2 X X X X X^2 X^2 0 0 1 1 X X X^2 0 1 X 1 X X X 0 X^2 X X 0 X^2 1 1 X^2 X X 1
0 X 0 X^2+X X^2 X^2+X X^2 X 0 X^2+X 0 X^2+X X^2 X X^2 X 0 X^2+X 0 X^2+X X^2 X X^2 X X^2+X X 0 X^2+X X^2+X X 0 X^2+X X X X^2 X X X 0 X^2 X^2 X 0 X^2+X X^2 X X^2+X X X^2+X 0 X X^2 X^2+X X X X X X 0 X^2 0 X^2 0 X^2 X^2 0 0 X^2 0 X^2 X^2 X^2 X^2+X X^2+X X X 0 X^2 X X X^2+X X X X 0 X^2 0 0 X^2 X^2+X
0 0 X^2 X^2 X^2 0 0 X^2 0 0 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 X^2 X^2 0 0 0 X^2 0 0 X^2 0 X^2 X^2 X^2 0 X^2 X^2 X^2 0 X^2 X^2 0 0 0 0 0 0 X^2 X^2 0 X^2 0 X^2 X^2 X^2 X^2 0 0 X^2 X^2 X^2 0 0 X^2 X^2 X^2 X^2 0 0 0 0 0 0 0 X^2 0 X^2 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 0 0 0 X^2
generates a code of length 90 over Z2[X]/(X^3) who´s minimum homogenous weight is 90.
Homogenous weight enumerator: w(x)=1x^0+6x^90+44x^91+6x^92+2x^94+4x^95+1x^96
The gray image is a linear code over GF(2) with n=360, k=6 and d=180.
This code was found by Heurico 1.16 in 0.533 seconds.